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ASYMPTOTIC METHODS OF SOLVING TWO-DIMENSIONAL DYNAMIC 
PROBLEMS OF A VISCOELASTIC LAYER WITH MIXED BOUNDARY CONDITIONS* 

V.M. ALEKSANDROV and V.B. ZELENTSOV 

Problems of shear of a viscoelastic layer by a rigid punch and of pressing the 
latter into such layer lying on a viscoelastic Winkler foundation are considered. 

The punch is subjected to time dependent harmonic forces. The deformation model is 
defined by the three-constants law (conventional body). Similar problems are con- 
sidered in the case of an elastic layer on an elastic Winkler foundation. All these 
problems are first reduced to integral equations of the first kind and, then, to 

infinite algebraic systems in conformity with /1,2/ that are solvable for small 
values of the characteristic geometric parameter. An asymptotic method for large 
values of that parameter is also developed. Similar methods were considered in /3, 
4/ in the case of a large characteristic parameter. 

1. Let us consider the problem of a viscoelastic layer of thickness h lying on a visco- 

elastic Winkler foundation and subjected to shear vibration by a rigid strip punch of width 

2~. A shear force T = T,, erp(--iot) is applied to the punch. Equations of the linear theory 
of viscoelasticity expressed in terms of displacements are of the form /5/ 
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where h (i) and p (2) are relaxation functions and pis the volume density of the layer mat- 

erial. 

Boundary conditions of the problem are 

1.2) 

y = h: u*3 = 0, 1 I I> a; us = E (I) exp (-iot), I z I Q (1 
(1.3) 

u, = 112 E 0; u,,* 0, 1 x 1 + 00 

of which (1.2) defines the work of the viscoelastic Winker foundation, where p* isthesurface 

density of the base material and v(t) is the relaxation function. Below, when deriving spec- 

ific formulas we use, without loss of generality, the three constants law of linear deforma- 

tion, viz. assume the layer shear modulus to be of the form /5/ 

p (1) = G" f G, exp (--t/t,) (1.4) 

where G, and G, are the static and instantaneous shear moduli, respectively, and t, is the 

relaxation time. In condition (1.2) we similarly assume 

v (t) = k, + k, exp (-t:t*) (1.5) 

where k, and Ic, are the static and instantaneous coefficients of the foundation and 1, is 

the relaxation time. 

We seek a solution of the form u3(z, y, t)= &(z, y)esp(--lot) of the problem, and apply- 

ing to Eqs.(l.l) the integral Fourier transform with respect to z reduce the boundary value 

problem to the integral equation of the first kind 
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(1.6) 

where F (x) is the amplitude of the unknown contact shear stresses under the punch, p is the 

complex shear modulus /5/ in which the prime at the dimensionless quantity n' is omitted here 

and subsequently. 
The Fourier transform of kernel k'(u) is of the form 

(1.7) 

The plane problem of impression of a vibrating rigid punch of width 2n intoaviscoelastic 

layer of thickness IL lying without friction on a viscoelastic foundation of the Winkler type 

is similarly formulated. Boundary conditions of such problem are of the form 

Here and in (1.1) 

h (t) = GA0 + GA’ exp (-t/t& p (t) = GFo + Gp' exp (-t/tl) (1.9) 

Y (t) = k, + k, exp (-t/t?) 

p (t), h (t), Y (t) is the relaxation function, GIo, GA’, t,, C,‘, G,,l, t, and k,, k,, t, are, respectively, 

the static and instantaneous moduli and the relaxation time of functions h, ~1 and v. 
Conditions (1.8) with Eqs.(l.l) define the mixed boundary value problem. Using the rep- 

resentation ui (5, y, t) = iii (z, y)exp (-iot) and applying the integral Fourier transform in Z, we 

obtain for the solution of the boundary value problem the integral equation of the problem 

defined by (1.6) in which it is necessary to substitute the dimensionless amplitude Q (E) of 
contact pressure for T(5). Function K(u)is not presented here owing to its unwieldiness. 

In the theoretical plane the problems of shear vibration and of vibrating impression of 

a rigid punch into an elastic layer on an elastic Winkler foundation are interesting in them- 

selves. The first of these is reduced in conformity with the scheme described above to the 
integral equation (1.6) in which 

K (u) = (1 + h,o-’ th o)(h, + o th a)-’ (1.10) 

u = vu” - x2, x2 = pmWp-‘, h, = (k - p*d) hp-’ 

where k is the coefficient of the Winkler foundation and p is the shear modulusofthelayer 
material. For brevity, the expression for K(u) is not written out here. 

2. Let us consider the integral equation (1.6) on the assumption that K(u) can be rep- 
resented in the form 

(2.1) 

where + i6,, k iy,, is a denumerable set of simple zeros and poles in the complex plane (u = 
0 + iz), a finite number of which may lie on the real axis. In this case integration along 
the real axis in the formula for k(t) in (1.6) must be replaced by integration along countour 
r which with the limit absorption principle taken into account in the conventional (regular) 
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case deviates from the real axis only where it bypasses the negative and positive poles from 

above and below, respectively, /6/. Let, moreover, 6, and y,, increase monotonically with 
increasing subscript number thus ensuring the convergence of the infinite product (2.11, and 

let along any regular system of contours C, the estimate 

K (u) = 0 (I u I-‘), u+ 00 (2.2) 

holds in the complex plane. 

Let us consider the case of E(X)= exp (--Ez) on the assumption that function s (5) may 
be represented by a Fourier integral. In conformity with /1,2/ the solution of the integral 

equation (1.6) can be of the form 

T (z) = K-’ (ie) exp (- EZ) + n2,Ha (x), 

Substituting (2.31 into (1.6) and taking 

(2.1), (2.31, and Jordan's lemma, we obtain 

‘x 

H,(s)=C,exp(- 6,~) t- D,exp (6,~) (2.3) 

the necessary quadratures with allowance for 

(2.4) 

Taking into consideration the linear independence of functions exp (--y,,, x) and exp (Y~z) 
/7/, for the determination of C,and D, we obtain from (2.4) the infinite algebraic system 

which in the case of a flat punch (E = 0) reduces to 

and solution (2.3) assumes the form 

T (zr) = K-1 (0) ( 1 .:- ,g, cc, ch 6,~ c h-‘&a) , 1 z I< a 

(2.6) 

(2.7) 

This solution is valid for a small parameter h = hia. The infinite algebraic systems 

(2.51 and (2.6) were investigated in /6,8/. 

3. We shall now derive a solution of the integral equation (1.6) which is effective for 

high values of parameter h. We assume that K(u) in (1.6) has N poles on the real axis and 

that integration is carried out along contour r defined in Sect.2. Taking into account the 

selected integration contour, we represent function k (t) as 

cs 

cos (iy,t) + v. p. & 
s 

K (u) eiutdu 
-_ 

(3.1) 

where Y,,, (m = 1,2, . . ., N) are poles of K(u) along the positive side of the real axis. 

Let K (u) = U-IL (u). Then, separating in the integral in (3.1) the singularity at t-+0 

and regularizing it on the real axis, taking into account the evenness of function K(U) and 

the following asymptotic estimates for L (u): 

L (24) = 1 + c1u-2 + q-4 + 0 (u-“), u - 03 (3.21 

L (u) = K (0) u + 0 (u3), u -+ 0 

we obtain 
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Having obtained the asymptotic expansion (3.31 of kernel k(t) for small t, we construct 
the solution of Eq.(1.6) using the method of /9/. We have 

=a 
% (X) = (U* - X2)-*” iz ,g Oij (2) hmm Inn h (3.41 

where function of is obtained from formulas (1.13) and, in the particular caseof B(X) = a 
from formulas (1.14)- (1.18) of /9/. Note that the method of effective when h>max(y,),n = 

1,2, . . ., N. 

4. Let us derive the formulas required for calculating the complex amplitude of displace- 
ment waves away from the punch. It is defined by the contour integral 

h-'iia(L)=& ?*(u~~(~)e~~~~ 
s 

(4.1) 
r 

where z*(u) is the Fourier transform of function T (a. 
Contour r was defined above. Closing the integration contour in the upper half-plane 

with allowance for (2.11- (2.31, after some calculations, we obtain 

H (u, u) = (u + u)-” sh (u + u) Q, D (y,,,) = P, (-ym2)x [Pa’ (-ym2)l-’ 

which in the case of a plane punch (E(Z)= s) becomes 

(4.2) 

(4.3) 

b Inn = (y,* - &')$,,th em a - 6,th &,a1 

where az_ is the same as in (2.6) and (2.7). These formulas are valid in the case of small 
h. For large .& it is necessary to use solutions of the integral equation (1.6) of form 

(3.41. In that case z*(u) is determined by formula 

r*(u)= i 5 o:,(~)h-"In"h (4.4) 
rn=So"=o 

The general solution is very cumbersome, but for E(X)= 
f0rlD 

E it can be represented in the 
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S, (u) = n (0.4356 (au)-‘J, - 0.1321 (a~)-~[3aul (u) - (a~)~J,l- 0.498&-‘0 (u)} 
cc 

6 (u) = kzI B (3/n, k + ‘is) M (k - 2, u) (2k - I)-’ 

I (u) = -Jo + 2 (au)-‘J,, M (k, u) = F (k + V2; Va; k _I- r,;--(~u)~/16) 

where J, = J, (au) (m = 0, 1, 2, . . .) is the Bessel function and I' is obtained using formula 
(1.18) of /lo/. 

Substituting the expression for Z* (u) in (4.4) into (4.1) and closing the integration 
contour in the upper half-plane with allowance for (2.1) and (2.2) we obtain 

(4.6) 

Similar formulas can also be obtained for amplitudes at x(--a. 

5.It can be shown that in the problem of viscoelastic (elastic) layer lying on a visco- 

elastic (elastic) Winkler foundation and subjected to shear vibration by a rigid punch allof 
properties (2.1), (2.21, and (3.2) are satisfied by function K (u). Hence it is possible to 
use formula (2.7) for constructing a solution for small h. To do this it is necessary to 
know the zeros and poles of K(u)in the complex plane (u = IJ + ir). To obtain a qualitative 

picture of the phenomenon it is necessary to investigate the dependence of the amplitude of 
contact shear stresses Z(5) on parameters of the viscoelastic problem. When I z !<I and 

hla<1, it is possible to substitute for (2.7) the formula 

T (I) = K-l (0) + 0 (exp (-(I - z) &,a)) (5.1) 

For simplicity we set below P* = ph, t, = t, and vary within wide limits the following 
parameters of the problem: 

Xz = $&zG,-', iY = GotI (ph2)-‘, 0 = G&k 

n, = k,(k, + k,)-', nz = GIG,-' 

(5.2) 

Curves of IT(X) 1 calculated by formula (5.1) in terms of the dimensionless frequency x 

for x approaching zero when q1 = qz = I3 = 1 are shown in Fig.1 for two values of 6 indicated 

at respective curves. A simultaneous and equal relative change of the layer and Winkler found- 

ation rigidity results in a slight shift of the resonant frequency to the left and a decrease 

of the amplitude of [T(Z) 1 . When 8) 100 the amplitude and resonance frequencies become 

stabilized (elasticity). The appearance of intermediate peaks 17 1; when 6 = 5 is interest- 

ing; when 6 > 10 these peaks are absent. 
Variation of parameter 0 shows that when the layer is relatively rigid (6 := 100), vari- 

ation of the foundation rigidity only slightly affects the pattern of resonance frequency 

distribution and the amplitude. With a less rigid layer (6 = 5) an increase of the foundation 

rigidity relative to that of the layer shifts the first resonance frequencies to the right, 

while for x> 15 the resonance frequencies are the same for various values of 8. 

Let us investigate the effect of internal friction on the system operation mode. In the 

case of a layer more rigid than the foundation (0 = 100) the variation of friction in the 

Winkler foundation (variation of nl) is apparent only at low frequencies, and when x > 0.2 

the amplitudes are independent of 11~. The layer internal friction n2 has a considerable ef- 

fect on the system resonant frequencies. Curves 1,2, and 3 in Fig.2 correspond to Q equal 

0.1, 1, and 10 with 6 = 5,O = 1, n1 = 1. Analysis of these curves shows that as the layer 

viscosity decreases, resonance frequencies shift to the right (the first curve with X<7 

has three resonance peaks , while the third has only one) and the resonance peaks become blur- 

red. 
Some interesting aspects are disclosed by the analysis of the problem of shear byarigid 

punch of an elastic layer on an elastic Winkler foundation. Function K(U) of form (1.10) 

satisfies here all requirements defined by (2.1), (2.2), and (3.2). It is, thus, possible to 

obtain an idea of wave properties of stresses under the punch and of displacement away from 
it by constructing the phase plane, as was done in /6/. Setting for simplicity P, = ph as 

above, we vary parameters x and 0 within wide limits. Curves showing the dependence of 

stress wave phase velocities under the punch and of displacement wave phase velocities on it 
are shown in Fig.3 by dash and solid lines, respectively, for El= 25. It will be seen that 

when 8>1 and e<x2, the zeros and poles have the same properties as in the problem with 

a rigid base. But the first two curves (poles and zeros) sharply increase in comparison with 
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other curves and rapidly converge. This and the structure of formulas (2.6) and (2.71 imply 

that waves of small amplitude but high phase velocity appear both under and away from the 
punch. This is a characteristic of the type of foundation considered here. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

Fig.1 

Fig.3 

Fig.2 

Similar numerical results can also be ob- 
tained for problems of a rigid punch vibration on 
a viscoelastic (elastic) layer on a viscoelastic 
(elastic) Winkler foundation. The amplitude of 
normal stresses under the punch and of normal 
waves away from it can be calculated by formulas 
(2.7) and (3.41, and (4.3) and (4.6) r respective- 

ly. 
We point out in concluding that the methods 

expounded in /1,2,6,8,10/ make it possible to 
treat in the same way problems of twist vibration 
and impression vibration induce by a punch press- 
ed into a viscoelastic layer lying on a visco- 
elastic Winkler foundation. 

The author thanks N.Kh. Arutiunian for his 
interest in this work. 
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